Sabtu, 29 Agustus 2015

Saluran Transmisi

Kategori saluran transmisi berdasarkan pemasangan

Berdasarkan pemasangannya, saluran transmisi dibagi menjadi dua kategori, yaitu:
1. saluran udara (overhead lines); saluran transmisi yang menyalurkan energi listrik melalui kawat-kawat yang digantung pada isolator antar menara atau tiang transmisi. Keuntungan dari saluran transmisi udara adalah lebih murah, mudah dalam perawatan, mudah dalam mengetahui letak gangguan, mudah dalam perbaikan, dan lainnya. Namun juga memiliki kerugian, antara lain: karena berada di ruang terbuka, maka cuaca sangat berpengaruh terhadap keandalannya, dengan kata lain mudah terjadi gangguan, seperti gangguan hubung singkat, gangguan tegangan lebih karena tersambar petir, dan gangguan-gangguan lainnya. Dari segi estetika/keindahan juga kurang, sehingga saluran transmisi bukan pilihan yang ideal untuk suatu saluran transmisi didalam kota.

2. saluran kabel tanah (underground cable); saluran transmisi yang menyalurkan energi listrik melalui kabel yang dipendam didalam tanah. Kategori saluran transmisi seperti ini adalah yang favorite untuk pemasangan di dalam kota, karena berada didalam tanah, maka tidak mengganggu keindahan kota dan juga tidak mudah terjadi gangguan akibat kondisi cuaca atau kondisi alam. Namun juga memilik kekurangan. Seperti: mahalnya biaya investasi dan sulitnya menentukan titik gangguan dan perbaikannya.

Kedua cara penyaluran memiliki keuntungan dan kerugian masing-masing.

Kategori saluran transmisi berdasarkan arus listrik
Dalam dunia kelistrikan, dikenal dua kategori arus listrik, yaitu arus bolak-balik (Alternating Current/AC) dan arus searah (Direct Current/DC). Oleh karena itu , berdasarkan jenis arus listrik yang mengalir di saluran transmisi, maka saluran transmisi terdiri dari:

1. saluran transmisi AC; didalam system AC, penaikan dan penurunan tegangannya sangat mudah dilakukan dengan bantuan transformator dan juga memiliki 2 sistem, sistem fasa tunggal dan sistem fasa tiga sehingga saluran transmisi AC memiliki
keuntungan lainnya, antara lain:
a. daya yang disalurkan lebih besar
b. nilai sesaat (instantaneous value)nya konstan, dan
c. mempunyai medan magnet putar

selain keuntungan-keuntungan yang disebutkan diatas, saluran transmisi AC juga memilik kerugian, yaitu: tidak stabil, isolasi yang rumit dan mahal (mahal disini dalam artian untuk menyediakan suatu isolasi yang memang aman dan kuat).

2. saluran transmisi DC; dalam saluran transmisi DC, daya guna atau efesiensinya tinggi karena mempunyai factor daya = 1, tidak memiliki masalah terhadap stabilitas terhadap system, sehingga dimungkinkan untuk penyaluran jarak jauh dan memiliki isolasi yang lebih sederhana.

Berhubungan dengan keuntungan dan kerugiannya, dewasa ini saluran transmisi di dunia sebagian besar menggunakan saluran transmisi AC. Saluran transmisi DC baru dapat dianggap ekonomis jika jarak saluran udaranya antara 400km sampai 600km, atau untuk saluran bawah tanah dengan panjang 50km. hal itu disebabkan karena biaya peralatan pengubah dari AC ke DC dan sebaliknya (converter & inverter) masih sangat mahal, sehingga dari segi ekonomisnya saluran AC akan tetap menjadi primadona dari saluran transmisi.

Tegangan Transmisi


Apabila tegangan transmisi dinaikkan, maka daya guna penyaluran akan naik oleh karena rugi-rugi transmisi turun, pada besaran daya yang disalurkan sama. Namun, penaikan tegan transmisi berarti juga penaikan isolasi dan biaya peralatan juga biaya gardu induk.

Oleh karena itu pemilihan tegangan transmisi dilakukan dengan memperhitungkan daya yang disalurkan, jumlah rangkaian, jarak penyaluran, keandalan (reliability), biaya peralatan untuk tegangan tertentu, serta tegangan-tegangan yang sekarang ada dan yang akan di rencanakan. Penentuan tegangan juga harus dilihat dari segi standarisasi peralatan yang ada. Penentuan tegangan transmisi merupakan bagian dari perancangan system tenaga listrik secara keseluruhan.

Tingkat tegangan yang lebih tinggi, selain untuk memperbesar daya hantar dari saluran transmisi yang berbanding lurus dengan kuadrat tegangan, juga untuk memperkecil rugi-rugi daya dan jatuh tegangan pada saluran transmisi. Jelas sudah, dengan mempertinggi tegangan maka tingkat isolasi pun harus lebih tinggi, dengan demikian biaya peralatan juga akan tinggi.

Meskipun tidak jelas menyebutkan keperluannya sebagai tegangan transmisi, di Indonesia, pemerintah telah menyeragamkan deretan tegangan tinggi sebagai berikut:
a. Tegangan Nominal (kV): (30) - 66 - 150 - 220 – 380 – 500.
b. Tegangan tertinggi untuk perlengkapan (kV): (36) – 72,5 – 170 – 245 – 420 - 525.

Tegangan nominal 30 kV hanya diperkenankan untuk daerah yang tegangan distribusi primer 20 kV tidak dipergunakan. Penentuan deret tegangan diatas, disesuaikan dengan rekomendasi dari International Electrotechnical Commission (IEC).

Parameter-Parameter yang Menentukan Keandalan dan Kualitas Listrik

Ukuran keandalan dan kualitas listrik secara umum ditentukan oleh beberapa parameter sebagai berikut:

1. Frekuensi dengan satuan hertz (Hz);
Yaitu jumlah siklus arus bolak-balik (alternating current, AC) per detik. Beberapa negara termasuk Indonesia menggunakan frekuensi listrik standar, sebesar 50 Hz.

Frekuensi listrik ditentukan oleh kecepatan perputaran dari turbin sebagai penggerak mula. Salah satu contoh akibat dari frekuensi listrik yang tidak stabil adalah akan mengakibatkan perputaran motor listrik sebagai penggerak mesin-mesin produksi di industri manufaktur juga tidak stabil, dimana hal ini akan mengganggu proses produksi.

Gangguan-gangguan yang terjadi pada sistem frekuensi:
a. Penyimpangan terus-menerus (Continuous Deviation); frekuensi berada diluar batasnya pada saat yang lama (secara terus-menerus), frekuensi standar 50 Hz dengan toleransi 0,6 Hz ------ (49,4 – 50,6 Hz)
b. Penyimpangan sementara (Transient Deviation); penurunan atau penaikkan frekuensi secara tiba-tiba dan sesaat.

2. Tegangan atau voltage dengan satuan volt (V);
Tegangan yang baik adalah tegangan yang tetap stabil pada nilai yang telah ditentukan. Walaupun terjadinya fluktuasi (ketidak stabilan) pada tegangan ini tidak dapat di hindarkan, tetapi dapat di minimalkan.

Gangguan pada tegangan antara lain :
a. Fluktuasi Tegangan; seperti: Tegangan Lebih (Over Voltage), Tegangan Turun (Drop Voltage) dan tegangan getar (flicker voltage)

Tegangan lebih pada sistem akan mengakibatkan arus listrik yang mengalir menjadi besar dan mempercepat kemunduran isolasi (deterioration of insulation)
sehingga menyebabkan kenaikan rugi-rugi daya dan operasi, memperpendek umur kerja peralatan dan yang lebih fatal akan terbakarnya peralatan tersebut. Peralatan-peralatan yang dipengaruhi saat terjadi tegangan lebih adalah transformer, motor-motor listrik, kapasitor daya dan peralatan kontrol yang menggunakan coil/kumparan seperti solenoid valve, magnetic switch dan relay. tegangan lebih biasanya disebabkan karena eksitasi yang berlebihan pada generator listrik (over excitation), sambaran petir pada saluran transmisi, proses pengaturan atau beban kapasitif yang berlebihan pada sistem distribusi.

Tegangan turun pada sistem akan mengakibatkan berkurangnya intensitas cahaya (redup) pada peralatan penerangan; bergetar dan terjadi kesalahan operasi pada peralatan kontrol seperti automatic valve, magnetic switch dan auxiliary relay; menurunnya torsi pada saat start (starting torque) pada motor-motor listrik. Tegangan turun biasanya disebabkan oleh kurangnya eksitasi pada generator listrik (drop excitation), saluran transmisi yang terlalu panjang, jarak beban yang terlalu jauh dari pusat distribusi atau peralatan yang sudah berlebihan beban kapasitifnya.

b.Tegangan Kedip (Dip Voltage); adalah turunnya tegangan (umumnya sampai 20%) dalam perioda waktu yang sangat singkat (dalam milli second). Penyebabnya adalah hubungan singkat (short circuit) antara fasa dengan tanah atau fasa dengan fasa pada jaringan distibusi. Tegangan kedip dapat mengakibatkan gangguan pada: stabilisator tegangan arus DC, electromagnetic switch, variable speed motor, high voltage discharge lamp dan under voltage relay.

c. Harmonik Tegangan (Voltage Harmonic); adalah komponen-komponen gelombang sinus dengan frekuensi dan amplitudo yang lebih kecil dari gelombang asalnya (bentuk gelombang yang cacat), contoh :
Gelombang asal : (28,3) sin (t) kV.
Harmonik ke-3 : (28,3/3) sin (3t) kV.
Harmonik ke-5 : (28,3/5) sin (5t) kV.

Tegangan harmonik dapat mengakibatkan: panas yang berlebihan, getaran keras, suara berisik dan terbakar pada peralatan capacitor reactor (power capacitor); meledak pada peralatan power fuse (power capacitor); salah beroperasi pada peralatan breaker; suara berisik dan bergetar pada peralatan rumah tangga (seperti TV, radio, lemari pendingin dsb.); dan pada peralatan motor listrik, elevator dan peralatan-peralatan kontrol akan terjadi suara berisik, getaran yang tinggi, panas yang berlebihan dan kesalahan operasi. Kontribusi arus harmonik akan menyebabkan cacat (distorsi) pada tegangan, tergantung seberapa besar kontribusinya.

Cara mengurangi pengaruh tegangan harmonik yang terjadi pada sistem adalah dengan memasang harmonic filter yang sesuai pada peralatan-peralatan yang dapat menyebabkan timbulnya harmonik seperti arus magnetisasi transformer, static VAR compensator dan peralatan-peralatan elektronika daya (seperti inverter, rectifier, converter, dsb.)

d. Ketidak seimbangan tegangan (Unbalance Voltage); umumnya terjadi di sistem distribusi karena pembebanan fasa yang tidak merata.

Gangguan-gangguan tegangan sebagaimana dijelaskan diatas dapat menyebabkan peralatan-peralatan yang menggunakan listrik, beroperasi secara tidak normal dan yang paling fatal adalah kerusakan atau terbakarnya peralatan.

3. Interupsi atau Pemadaman Listrik;
Interupsi ini dapat dibedakan menjadi:
a. Pemadaman yang direncanakan (Planned Interruption/scheduled interruption); adalah pemadaman yang terjadi karena adanya pekerjaan perbaikan atau perluasan jaringan pada sistem tenaga listrik.
b. Pemadaman yang tidak direncanakan (Unplanned Interruption); adalah pemadaman yang terjadi karena adanya gangguan pada sistem tenaga listrik seperti hubung singkat (short circuit).

Parameter-parameter yang menentukan keandalan dan kualitas listrik sebagaimana dijelaskan diatas adalah sesuatu yang meyakinkan (measureable) dan dapat diminimalkan dengan cara mengkoreksi terhadap konfigurasi dan peralatan pada sistem, manajemen serta sumber daya manusia yang handal dari perusahaan yang menjual energi listrik.

Keandalan dan Kualitas Listrik

Pemadaman listrik yang terlalu sering dengan waktu padam yang lama dan tegangan listrik yang tidak stabil, merupakan refleksi dari keandalan dan kualitas listrik yang kurang baik, dimana akibatnya dapat dirasakan secara langsung oleh pelanggan.

Sistem tenaga listrik yang andal dan energi listrik dengan kualitas yang baik atau memenuhi standar, mempunyai kontribusi yang sangat penting bagi kehidupan masyarakat modern karena peranannya yang dominan dibidang industri, telekomunikasi, teknologi informasi, pertambangan, transportasi umum, dan lain-lain yang semuanya itu dapat beroperasi karena tersedianya energi listrik. Perusahaan-perusahaan yang bergerak diberbagai bidang sebagaimana disebutkan diatas, akan mengalami kerugian cukup besar jika terjadi pemadaman listrik tiba-tiba atau tegangan listrik yang tidak stabil, dimana aktifitasnya akan terhenti atau produk yang dihasilkannya menjadi rusak atau cacat.

Negara-negara yamg memiliki sistem pembangkit, transmisi dan distribusi energi listrik dengan teknologi dan peralatan mutakhir serta manajemen yang baik seperti Amerika Serikat, Jepang, Perancis dan negara-negara maju lainnya benar-benar memberikan perhatian khusus terhadap keandalan dan kualitas listrik karena pengaruhnya yang krusial terhadap roda perekonomian.

Sistem Tenaga Listrik

Sebelum listrik sampai ke rumah kita dan kita manfaatkan secara langsung, apakah ada yang berpikir bagaimana listrik tersebut dihasilkan? Sebagai contoh pada PLTA, apakah setelah energi kinetik air dikonversi menjadi energi listrik dapat langsung kita gunakan energi listrik tersebut? Ternyata proses dari bagaimana listrik tersebut dihasilkan sampai dapat kita manfaatkan secara langsung dapat juga disebut sebagai sistem tenaga listrik.
Secara umum sistem tenaga listrik terdiri dari:

1. Pusat Pembangkit Listrik (Power Plant);
Yaitu tempat energi listrik pertama kali dibangkitkan, dimana terdapat turbin sebagai penggerak mula (prime mover) dan generator yang membangkitkan listrik. Biasanya di pusat pembangkit listrik juga terdapat gardu induk (GI). Peralatan utama pada gardu induk antara lain: Transformer, yang berfungsi untuk menaikkan tegangan generator (11,5 kV) menjadi tegangan transmisi / tegangan tinggi (150 kV) dan juga peralatan pengaman dan pengatur. Jenis pusat pembangkit yang umum antara lain: PLTA (Pusat Listrik Tenaga Air), PLTU (Pusat Listrik Tenaga Uap), PLTG (Pusat Listrik Tenaga Gas), PLTN (Pusat Listrik Tenaga Nuklir).

2. Saluran Transmisi (Transmission Line);
Berupa kawat-kawat yang di pasang pada menara atau tiang dan bisa juga melalui kabel yang di pendam di bawah permukaan tanah, saluran transmisi berfungsi menyalurkan energi listrik dari pusat pembangkit, yang umumnya terletak jauh dari pusat beban, ke gardu induk penurun tegangan yang memiliki transformer penurun tegangan dari tegangan transmisi ke tegangan distribusi (menengah). Saluran transmisi ini mempunyai tegangan yang tinggi agar dapat meminimalkan rugi-rugi daya (power losses) disaluran. Contoh dari saluran transmisi di Indonesia adalah : SUTT (Saluran Udara Tegangan Tinggi, dengan tegangan kerja 70--150 kV), SUTET (Saluran Udara Tegangan Ekstra Tinggi, dengan tegangan kerja 500 kV).

3. Sistem Distribusi;
Yang merupakan sub-sistem tersendiri yang terdiri dari: Pusat Pengatur Distribusi ( Distribution Control Centre, DCC ) , Saluran tegangan menengah (6 kV dan 20 kV, biasa juga disebut tegangan distribusi primer) yang merupakan saluran udara atau kabel tanah, Gardu Distribusi (GD) tegangan menengah yang terdiri dari panel-panel pengatur tegangan menengah dan trafo sampai dengan panel-panel distribusi tegangan rendah (380 V, 220 V) yang menghasilkan tegangan kerja/tegangan jala-jala untuk industri dan konsumen perumahan.

Energi Terbarukan di Indonesia

Indonesia adalah negeri yang kaya raya. Sumber daya alamnya sangat melimpah. Beberapa di antaranya bisa dikembangkan menjadi energi alternatif sebagai pengganti bahan bakar minyak yang terus menurun dan menyusut.
Sejumlah negara masih mengandalkan minyak bumi, batu bara, dan gas alam untuk memenuhi sebagian besar kebutuhan energinya. Padahal, stok bahan bakar fosil sebagai sumber energi saat ini terus berkurang. Dalam banyak studi, Indonesia menyimpan ribuan energi terbarukan (renewable energy).
Berikut ini adalah 10 energi terbarukan yang dimiliki Indonesia dan berpotensi besar untuk menyediakan sumber energi berlebih.
 
1. Energi matahari
PT PLN (Persero) memanfaatkan energi ini untuk menerangi 1.000 pulau terpencil pada 2012. Walaupun pemanfaatannya masih dalam skala kecil karena kapasitas sel surya yang belum mencukupi, tapi dalam waktu dekat energi ini akan dapat dimanfaatkan seoptimal mungkin.
2. Energi biomasa (biomass energy)
Sektor perkebunan menyumbang 64 juta ton limbah untuk energi ini.
3. Hydropower (sumber daya air)
Sungai-sungai dan air terjun di Indonesia sangat potensial bagi energi ini.
4. Energi dari laut (ocean energy)
Masih seputar lautan. Lautan menyediakan energi terbarukan (renewable energy), seperti energi gelombang atau pemanfaatan pasang surut air laut dapat digunakan untuk membangkitkan energi listrik dan energi panas air laut (ocean thermal energy)—yang berasal dari panas yang tersimpan dalam air laut.
5. Energi angin
Sepertiga luas Indonesia adalah lautan. Potensi angin sebagai energi terbarukan dengan menggunakan turbin angin untuk menghasilkan listrik.
6. Energi geothermal
Di dalam perut negeri ini, tersimpan 40 persen cadangan panas bumi di dunia. Mayoritas masih ‘tidur’ di bumi Andalas atau Sumatra. Cadangan panas bumi di Sumatra sebesar 6.645 Megawatt electric (MWe) atau hampir 50 persen dari total cadangan nasional, sebesar 15.882 MWe.
7. Hidrogen
Hidrogen memiliki potensi yang amat besar sebagai bahan bakar dan sumber energi.
8.Biodiesel
Saat ini, pengembangan biodiesel yang bersumber dari tanaman jarak (Jatropha) terus dilakukan. Sayang, energi ini belum dikembangkan secara maksimal.
9. Bioetanol
Bioetanol merupakan salah satu jenis biofuel (bahan bakar cair dari pengolahan tumbuhan) di samping biodiesel. Bisa berbahan baku dari singkong, jagung, kelapa sawit.
10. Gasifikasi batu bara (gasified coal)
Beberapa perusahaan sudah mengembangkan dan memanfaatkan energi ini.

Prinsip Kerja KWh Meter

Apa nama alat pada gambar diatas?? Yupp, namanya adalah KWh Meter. KWh meter digunakan untuk mengukur energi listrik yang menentukan besar kecilnya rekening listrik pemakai. Mengingat sangat pentingnya arti kwh meter, baik bagi PLN maupun si pemakai maka perlu diperhatikan benar-benar cara penyambungannya.
Nah kenapa meteran pada KWh Meter dapat mengukur besar pemakaian listrik akan dijelaskan sebagai berikut.
 Dalam alat ukur energi, kumparan-kumparan arus dan tegangan merupakan suatu belitan pada dua buah magnet. Kumparan arus akan membangkitkan fluks magnet dengan nilai berbanding lurus dengan besar arus. Terjadinya perputaran dari piringan aluminium karena interaksi dari kedua medan magnet ini. Kemudian putaran piringan di transfer pada roda - roda  pencatat. Pada transfer mati nilai putaran keping Aluminium ke roda - roda pencatat dilakukan kalibrasi untuk memperoleh nilai energi terukur dalam besaran KWh ( Kilo Watt Hours ).
Pada saat arus beban mengalir pada kumparan, arus akan menimbulkan flux magnit  Ï†1, sedangkan pada kumparan tegangan terjadi perbedaan fase antara arus dan tegangan sebear 900, hal ini karena kumparan tegangan bersifat induktor. Arus yang melalui kumparan tegangan akan menimbulkan flux magnit φ2 yang berbeda fase 900 dengan φ 1. Namun Fluks magnetik akan membangkitkan arus Eddy pada piringan yang akan menghasilkan gaya yang melawan arah putaran piringan. (kelemahan 1). Pada saat beban berat φ1 akan bertambah besar, pertambahan ini mengakibatkan arus pusar ( arus eddy ) pada kepingan. Aluminium juga bertambah besar, sedang arus eddy ini menimbulkan momen lawan pada keping Aluminium, dan akan menghambat putaran keping  Aluminium. Untuk mengatasinya pada kumparan arus dipasang shunt magnetis dimana pada saat beban penuh / berat flux tidak sepenuhnya dapat menimbulkan momen lawan. Pada kenyataanya beda fase antara φ1 dan φ2 tidak bisa betul - betul 90°, karena ada -nya kerugian inti dan tekanan pada kumparan tegangan. Untuk mengatasi ini caranya adalah dengan memasang kumparan penyesuai fase pada inti kumparan tegangan

Potential Transformator

Pada artikel sebelumnya sudah dibahas tentang trafo arus. Maka pada artikel ini akan dibahas mengenai trafo tegangan. Trafo tegangan digunakan untuk menurunkan tegangan sistem dengan perbandingan transformasi tertentu. Transformator Tegangan/Potensial (PT) adalah trafo instrument yang berfungsi untuk merubah tegangan tinggi menjadi tegangan rendah sehingga dapat diukur dengan Volt meter.

Prinsip kerja Trafo tegangan, kumparan primernya dihubungkan parallel dengan jaringan yang akan diukur tegangannya. Voltmeter atau kumparan tegangan wattmeter langsung dihubungkan pada sekundernya. Jadi rangkaian sekunder hampir pada kondisi open circuit. Besar arus primernya tergantung pada beban disisi sekunder. Rancangan trafo tegangan ini sama dengan trafo daya step-down tetapi dengan beban yang sangat ringan.


Prinsip kerja trafo jenis ini sama dengan trafo daya, meskipun demikian rancangannya berbeda dalam beberapa hal, yaitu :

a. Kapasitasnya kecil (10 s/d 150 VA), karena digunakan untuk daya yang kecil.

b. Galat faktor transformasi dan sudut fasa tegangan primer dan sekuder lebih kecil untuk mengurangi kesalahan pengukuran.

c. Salah satu terminal pada sisi tegangan tinggi dibumikan/ ditanahkan.

d. Tegangan pengenal sekunder biasanya 100 atau 100√3 V



Ada dua macam trafo tegangan yaitu :

a. Transformator Tegangan magnetik.

Transformator ini pada umumnya berkapasitas kecil yaitu antara 10 – 150 VA. Faktor ratio dan sudut fasa trafo tegangan sisi primer dan tegangan sekunder dirancang sedemian rupa supaya faktor kesalahan menjadi kecil. Salah satu ujung kumparan tegangan tinggi selalu diketanahkan. Trafo tegangan kutub tunggal yang dipasang pada jaringan tiga fasa disamping belitan pengukuran, biasanya dilengkapi lagi dengan belitan tambahan yang digunakan untuk mendeteksi arus gangguan tanah. Belitan tambahan dari ketiga trafo tegangan dihubungkan secara seri

b. Trafo Tegangan Kapasitif

Trafo pembagi tegangan kapasitip dipakai untuk keperluan pengukuran tegangan tinggi, sebagai pembawa sinyal komunikasi dan kendali jarak jauh. Pada tegangan pengenal yang lebih besar dari 110 kV, karena alasan ekonomis maka trafo tegangan menggunakan pembagi tegangan dengan menggunakan kapasitor sebagai pengganti trafo tegangan induktif. Pembagi tegangan kapasitif dapat digambarkan seperti gambar dibawah ini. Oleh pembagi kapasitor, tegangan pada C2 atau tegangan primer trafo penengah V1 diperoleh dalam orde puluhan kV, umumnya 5, 10, 15 dan 20 kV. Kemudian oleh trafo magnetik tegangan primer diturunkan menjadi tegangan sekunder standar 100 atau 100√3 Volt. Jika terjadi tegangan lebih pada jaringan transmisi, tegangan pada kapasitor C2 akan naik dan dapat menimbulkan kerusakan pada kapasitor tersebut. Untuk mencegah kerusakan tersebut dipasang sela pelindung (SP). Sela pelindung ini dihubung seri dengan resistor R untuk membatasai arus saat sela pelindung bekerja untuk mencecah efek feroresonansi.

Keburukan trafo tegangan kapasitor adalah terutama karena adanya induktansi pada trafo magnetik yang non linier, mengakibatkan osilasi resonansinya yang timbul menyebabkan tegangan tinggi yang cukup besar dan menghasilkan panas yang tidak diingikan pada inti magnetik dan belitan sehingga menimbulkan panas yang akan mempengaruhi hasil penunjukan tegangan. Diperlukan elemen peredam yang akan mengahsilkan tidak ada efek terhadap hasil pengukuran walaupun kejadian tersebut hanya sesaat.


 Berdasarkan perbandingan antara jumlah lilitan primer dan jumlah lilitan skunder transformator tegangan ada dua jenis yaitu:

Transformator step up yaitu transformator yang mengubah tegangan bolak-balik rendah menjadi tinggi, transformator ini mempunyai jumlah lilitan kumparan sekunder lebih banyak daripada jumlah lilitan primer (Ns > Np).

Transformator step down yaitu transformator yang mengubah tegangan bolak-balik tinggi menjadi rendah, transformator ini mempunyai jumlah lilitan kumparan primer lebih banyak daripada jumlah lilitan sekunder (Np > Ns).

Dengan memilih jumlah lilitan yang sesuai untuk tiap kumparan dapat dihasilkan GGL kumparan sekunder yang berbeda dengan GGL kumparan primer. Hubungan GGL atau tegangan primer (Vp) tegangan sekunder (Vs), jumlah lilitan kumparan primer (np) dan jumlah lilitan kumparan sekunder (ns)

Menurut kutubnya trafo tegangan dibedakan menjadi dua yaitu :

1) Trafo satu kutub : trafo tegangan yang salah satu terminalnya dibumikan / ditanahkan, dipergunakan untuk tegangan diatas 30 kV

2) Trafo dua kutub : trafo tegangan yang kedua terminalnya diisolir dari bumi / tanah, hanya digunakan untuk tegangan dibawah 30 kV

Berdasarkan jenis tegangan, trafo tegangan dibedakan menjadi 2, yaitu :

• Transformator satu fasa, bila transformator digunakan untuk memindahkan tenaga listrik satu fasa.
• Transformator tiga fasa, bila transformator digunakan untuk memindahkan tenaga listrik tiga fasa.